We had two design goals in angr that influenced this choice:
- angr needed to be able to analyze binaries from multiple architectures. This mandated the use of an IR to preserve our sanity, and required the IR to support many architectures.
- We wanted to implement a binary analysis engine, not a binary lifter. Many projects start and end with the implementation of a lifter, which is a time consuming process. We needed to take something that existed and already supported the lifting of multiple architectures.
Searching around the internet, the major choices were:
- LLVM is an obvious first candidate, but lifting binary code to LLVM cleanly is a pain. The two solutions are either lifting to LLVM through QEMU, which is hackish (and the only implementation of it seems very tightly integrated into S2E), or McSema, which only supported x86 at the time but has since gone through a rewrite and gotten support for x86-64 and aarch64.
- TCG is QEMU's IR, but extracting it seems very daunting as well and documentation is very scarse.
- REIL seems promising, but there is no standard reference implementation that supports all the architectures that we wanted. It seems like a nice academic work, but to use it, we would have to implement our own lifters, which we wanted to avoid.
- BAP was another possibility. When we started work on angr, BAP only supported lifting x86 code, and up-do-date versions of BAP were only available to academic collaborators of the BAP authors. These were two deal-breakers. BAP has since become open, but it still only supports x86_64, x86, and ARM.
- VEX was the only choice that offered an open library and support for many architectures. As a bonus, it is very well documented and designed specifically for program analysis, making it very easy to use in angr.
While angr uses VEX now, there's no fundamental reason that multiple IRs cannot be used. There are two parts of angr, outside of the
angr.engines.vex
package, that are VEX-specific:- the jump labels (i.e., the
Ijk_Ret
for returns,Ijk_Call
for calls, and so forth) are VEX enums. - VEX treats registers as a memory space, and so does angr. While we provide accesses to
state.regs.rax
and friends, on the backend, this doesstate.registers.load(8, 8)
, where the first8
is a VEX-defined offset forrax
to the register file.
To support multiple IRs, we'll either want to abstract these things or translate their labels to VEX analogues.